Step of Proof: fast-fib |
11,40 |
|
Inference at * 2 1 1 1 1 1
Iof proof for Lemma fast-fib:
1. f :
1.
n, a, b:
.
1. {m:
|
1. {
k:
. (a = fib(k)) 
((k
0) 
(b = 0)) 
((0 < k) 
(b = fib(k - 1))) 
(m = fib(n+k))}
2. n :
3. v :
3. {m:
|
3. {
k:
. (1 = fib(k)) 
((k
0) 
(0 = 0)) 
((0 < k) 
(0 = fib(k - 1))) 
(m = fib(n+k))}
4. f(n,1,0) = v
v = fib(n)
by D (-2)
1:
1: 3. v :
1: 4.
k:
.
1: 4. (1 = fib(k)) 
((k
0) 
(0 = 0)) 
((0 < k) 
(0 = fib(k - 1))) 
(v = fib(n+k))
1: 5. f(n,1,0) = v
1:
v = fib(n)
.